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Review of the Damped Least-Squares 
Inverse Kinematics with Experiments 
on an Industrial Robot Manipulator 

Stefan0 Chiaverini, Bruno Siciliano, Senior Member, IEEE, and Olav Egeland, Member, IEEE 

Abstract-The goal of this paper is to present experimental re- 
sults on the implementation of the damped least-squares method 
for the six-joint ABB IRb2000 industrial robot manipulator. 
A number of inverse kinematics schemes are reviewed which 
allow robot control through kinematic singularities. The basic 
scheme adopts a damped least-squares inverse of the manipulator 
Jacobian with a varying damping factor acting in the neighbor- 
hood of singularities. The effect of a weighted damped least- 
squares solution is investigated to provide user-defined accuracy 
capabilities along prescribed end-effector space directions. An 
on-line estimation algorithm is employed to measure closeness 
to singular configurations. A feedback correction error term is 
introduced to ensure algorithm tracking convergence and its 
effect on the joint velocity solution is discussed. Computational 
aspects are discussed in view of real-time implementation of the 
proposed schemes. Experimental case studies are developed to 
investigate manipulator performance in the case of critical end- 
effector trajectories passing through and near the shoulder and 
wrist singularities of the structure. 

I. INTRODUCTION 

INEMATIC SINGULAFUTIES have long been recog- K nized as causing one of the most serious problems 
in programming and control of robotic manipulators. It is 
well-known that when a manipulator is a t - o r  is in the 
neighborhood of-a singular configuration, severe restrictions 
may occur on its motion. 

Avoiding or reducing the effects of singularities has been 
an attractive topic which has captured the attention of many 
researchers in robotics during the last decade. A remarkable 
number of methods and/or algorithms aimed at computing 
well-behaved or robust inverse kinematics solutions have been 
proposed in the literature, and many papers in the past have 
presented simulation results. 

Close to a kinematic singularity, the usual inverse dif- 
ferential kinematics solutions based on Jacobian (pseudo-) 
inverse [ 11 become ill-conditioned, and this is experienced in 
the form of very high joint velocities [23 and large control 
deviations [3]. Nonetheless, when a pre-programmed reference 
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end-effector trajectory is to be tracked, it is possible either to 
interpolate in joint coordinates close to singular configurations 
[4] or to plan motions so that singularities are avoided. 

On the other hand, in real-time and sensory control of 
robotic manipulators, the reference trajectory is not known a 
priori and some remedies must be taken in order to counteract 
the unexpected occurrence of singularities. The same kind 
of problem is encountered in joy-stick control of a robot if 
the operator attempts to lead the robot through-or nearby-a 
singularity using end-effector motion increments. 

As anticipated above, several techniques have been devised 
to handle kinematic singularities. In some techniques [5]-[6] 
the degenerate directions in the end-effector space associated 
with a given singularity are identified and the end-effector 
velocity components along those directions in a suitable neigh- 
borhood of the singularity are eliminated. Other techniques 
are based on a modification of the exact inverse differential 
kinematics mapping by resorting to approximate mappings that 
offer robustness to singularities at the expense of reduced 
tracking accuracy [7]-[9]. A recent overview of algorithmic 
schemes for robotic systems through singularities can be found 
in [lo]. 

The effectiveness of the above schemes was extensively 
proven by means of theoretical analysis and simulation re- 
sults. Nevertheless, we believe that both further theoretical 
refinements of the. solutions and practical aspects related to 
implementation on real industrial manipulators are worthy of 
investigation. 

In the framework of our joint research project, following the 
earlier satisfactory experimental results obtained on the five- 
joint ABB Trallfa TR400 manipulator [ 111, [ 121, in this paper 
we investigate the performance of a number of schemes for 
controI in singular configurations on the six-joint ABB IRb 
2000 manipulator. Due to mechanical joint limits, this arm 
does not have the typical elbow singularity, which in any case 
is less troublesome than the singularities experienced inside 
the robot workspace. These are indeed the shoulder and wrist 
singularities, and they both occur for the given robot arm. 

The basic inverse kinematics solution is derived using 
a damped least-squares inverse [7], [8] of the end-effector 
Jacobian which attempts to trade off accuracy against feasi- 
bility of the solution. Also, a weighted damped least-squares 
inverse is adopted [7] where the use of proper weighting 
allows shaping of the solution along given end-effector space 
directions [ 131. Singular value decomposition [ 141 of the 
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Fig. 1 .  The ABB IRb 2000 industrial robot manipulator. 

Jacobian matrix is invoked to analyze the features of the 
method. A suitable criterion is used to compute varying 
damping and weighting factors. In this respect, to know 
good estimates of the smallest singular value, which gives 
a measure of closeness to singularity [15]-[16], is recognized 
to yield considerable performance enhancements. A recently 
proposed estimation algorithm of the two smallest singular 
values is utilized [17] which is originated from the numerical 
filtering method proposed in [ 181. Further, the introduction of 
a feedback correction term to avoid numerical drift instabilities 
[19]-[21] is proposed and its effects on solution accuracy and 
feasibility are discussed. 

In view of experimental testing, numerical implementation 
aspects of the solution are discussed in the paper in terms of 
flop requirements for the various inverse kinematics schemes. 
A description of the laboratory set-up is provided. Experi- 

mental case studies are illustrated with the manipulator passing 
nearby either a single (wrist) or a double (wrist and shoulder) 
singularity. The influence of the weighting factor and feedback 
correction term on solution accuracy is extensively tested out, 
and the performance of the various solutions is compared. 

The paper is organized as follows. Section I1 gives the 
kinematic description of the manipulator. The features of the 
inverse kinematics schemes based on the damped least-squares 
inverse are reviewed in Section 111, while its implementation 
aspects are discussed in Section IV. Section V is devoted to 
present the experimental results obtained with numerical case 
studies. Conclusions are drawn in a final section. 

11. KINEMATICS 

The ABB IRb 2000 is a six-revolute-joint manipulator 
manufactured by ABB Robotics. The manipulator is shown 
in Fig. 1, while its Denavit-Hartenberg parameters (Craig's 

TABLE I 
ABB IRb 2000 ROBOT MANIPULATOR: DENAVIT-HARTENBERG 

PARAMETERS; JOINT RANGE AND VELOCITY LIMITS 

Link dim1 
0 
0 
0 

0.850 
0 

0.100 

Joint I Working range [rad] 
-0.99 + +0.99 
-0.85 + +0.85 
-2.72 i -0.49 
-3.43 + +3.43 
-2.00 f +2.00 
-3.14 f +3.14 

4.89 
5.24 
5.24 

convention [22]) and mechanical joint limits are reported in 
Table I. The inner three joints are in the same arrangement as 
in an elbow manipulator, while the outer three joints constitute 
the spherical wrist commonly used in industrial robots. 

Let q denote the (6 x 1) joint vector. The (6 x 6) Jacobian 
matrix J relates the joint velocity vector q to the (6 x 1) 
end-effector velocity vector U through the mapping 

U = (E) = J(q)tj 

where p and w represent end-effector linear and angular 
velocities, respectively. 

In configurations where J has full rank, any end-effector ve- 
locity can be attained. When J is rank deficient, i.e. rank( J)  = 
T, T < 6, constraints on the feasible end-effector velocity occur 
and the manipulator is said to be at a singular configuration 
or at a singularity. 

The ABB IRb 2000 manipulator has a simple kinematic 
structure and its singularities are well-understood. We have: 

If a3c3 + d4s3 = 0,' the elbow is stretched out and 
the manipulator is in the so-called eZbuw singularity; this 
does nor correspond to a reachable configuration of the 
manipulator, due to the mechanical joint range for q3, 
and then is of no interest. 
If the wrist point lies on the axis of joint 1, its position 
cannot be changed by a rotation of q1 and the manipulator 
is in the so-called shoulder singularity (Fig. 2(a)); from 
simple geometrical relationship, it can be found that the 
shoulder singularity occurs when 

a2s2 + + d o 2 3  = 0. (2) 

If 

q5 = 0, (3) 

the two roll axes of the wrist are aligned and the manip- 
ulator is in the so-called wrist singularity (Fig. 2(b)). 

Conventional abbreviations have been used for sine and cosine of pertinent 
angles. 
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(a) 
Fig. 2. (a) Shoulder singularity. (b) Wrist singularity. 
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Fig. 3. Block diagram of laboratory set-up. 

111. DAMPED LEAST-SQUARES INVERSE KINEMATICS 

It is well-known that the control system of a robotic 
manipulator operates in the joint space generating the driving 
torques at the joint actuators. The reference trajectory for the 
joint control servos is to be generated via kinematic inversion 
of the given end-effector trajectory; when the arm is a t - o r  
close to-a singularity, large joint velocities may occur or 
degenerate directions may exist where end-effector velocity 
is not feasible. Therefore, the control system of a robotic 
manipulator should be provided with the capability of handling 
singularities. The following two subsections review the inverse 
kinematics solution based on the damped least-squares method 
with estimate of the smallest singular value of the Jacobian 
matrix. Then, the user-defined accuracy strategy is adopted in 
the framework of a weighted damped least-squares solution 
and a new criterion for choosing the weighting matrix is 
proposed for handling the wrist singularity of manipulators 
with a spherical wrist. Finally, a feedback correction tech- 
nique is proposed with suitable shaping of the feedback gain 
matrix. 

I 
I 
I 

A. Basic Damped Least-Squares Scheme 

An effective strategy that allows motion control of manip- 
ulators in the neighborhood of kinematic singularities is the 
damped least-squares technique originally proposed in [7]-[8]. 
The method corresponds to solving the equation 

JT(q). = (JT(q)J(q) + X21)tl (4) 

in lieu of (1); in (4), X 2 0 is the damping factor and I is the 
(6 x 6) identity matrix. It can be easily shown that the solution 
to (4) can be formally written as 

q = (JT(q)J(q) + X21)-lJT(q)v. 

Notice that, when X = 0, (1) becomes identical to (4) and 
the damped least-squares solution reduces to a regular matrix 
inversion which is ill-conditioned close to a singularity. 

It is important to point out that solutions to (4) satisfy the 
condition 

which evidences the possibility of trading off accuracy against 
feasibility of the joint velocity required to generate the given 
end-effector velocity. Therefore, it is essential to select suitable 
values for the damping factor: Small values of X give accurate 
solutions but low robustness to the occurrence of singular and 
near-singular configurations. Large values of A result in low 
tracking accuracy even when a feasible and accurate solution 
would be possible. 

To gain more insight into the features of solution (5 ) ,  the 
singular value decomposition [14] of the Jacobian matrix is 
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Fig. 4. Joint angles for 

ioint angle 1 
I 

B 
E 
Y 

I 

0 0.5 1 1.5 
time [SI 

ioint angle 2 0.4 - 

-0.2 

-0.4 

- 

1 I 

0 0.5 1 1.5 
time[s] 

ioint angle 3 -1.5 r 

-1.55 - . . . ... . 

a" E 
I 

-- --  - ___ - -  
-1.65 

0 0.5 1 1.5 0 0.5 1 1.5 
time [SI time [SI 

ioint angle 5 ioint angle 6 0.2 

--_ --- 

a" E 
Y 

-0.4 
0 0.5 1 1.5 0 0.5 1 1.5 

time [SI time [SI 
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helpful, that is 

(7) 

where vi (ui) are the input (output) singular vectors, and oi are 
the singular values ordered so that g1 2 0 2  2 . . . 2 cr > 0, 
with r being the rank of J . 

On the basis of (7), the damped least-squares solution (5) 
can be rewritten as 

6 

ViU? U. 
i=l 

It is clear that the components for which oi >> X are little 
influenced by the damping factor since 

(9) 

On the other hand, when a singularity is approached, the 
smallest singular value tends to zero while the associated 
component of the solution is driven to zero by the factor ci /X2;  
this progressively reduces the joint velocity associated with the 
near-degenerate components of the commanded velocity v . 

scheme (dashed). 

The damping factor X determines the degree of approx- 
imation introduced with respect to the pure least-squares 
solution; then, using a constant value for X may turn out to 
be inadequate for obtaining good performance over the entire 
manipulator workspace. An effective choice is to adjust X as 
a function of some measure of closeness to the singularity at 
the current configuration of the manipulator; to this purpose 
manipulability measures [7], [23] or estimates of the smallest 
singular value can be adopted. Remarkably, currently available 
microprocessors even allow real-time computation of full 
singular value decomposition [24]-[251. 

A singular region can be defined on the basis of the estimate 
of the smallest singular value of J; outside the region the 
exact solution is used, while inside the region a configuration- 
varying damping factor is introduced to obtain the desired 
approximate solution. The factor must be chosen so that 
continuity of joint velocity q is ensured in the transition at the 
border of the singular region. We have selected the damping 
factor according to the following law [13]: 
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Translation and orientation error norms and estimates of the two smallest singular values for Trajectory 1 without feedback correction; damped 

where 6 6  is the estimate of the smallest singular value, and 
E defines the size of the singular region; the value of A,,, 
is at user's disposal to suitably shape the solution in the 
neighborhood of a singularity. 

Equation (10) requires computation of the smallest singular 
value. In order to avoid a full singular value decomposition, 
we resort to recursive numerical techniques to find an estimate 
of the smallest singular value to be used in (10). 

B. Estimate of the Smallest Singular Value 
An estimate of the smallest singular value can be computed 

according to the recursive algorithm in [ 181. The algorithm is 
described below with a slight modification as the last input 
singular vector V6 is estimated instead of the output singular 
vector u 6 .  

Suppose that an estimate +6 of the last input singular vector 
is available, so that 9 6  M v 6  and Il+6ll = 1. This estimate is 
used to compute the vector +; from 

(1 1) 

Then the square of the estimate 6 6  of the smallest singular 
value can be found as 

(JTJ + A21)+k = +6. 

while the estimate of V6 is updated using 

The above estimation scheme is based on the assumption 
that v 6  is slowly rotating, which is normally the case. How- 
ever, if the manipulator is close to both the wrist and shoulder 
singularities, the vector v 6  will instantaneously rotate 90' if 
the two smallest singular values cross. The estimate of the 

smallest singular value will then track c75 initially, before i.6 
again converges to V6. This problem was recognized in [18]. 
As previously noted, the ABB IRb 2000 does not have an 
elbow singularity due to joint limits, so at most two of the 
singular values can become zero. 

An extension of the scheme in [18] has recently been 
proposed in [17] by estimating not only the smallest but also 
the second smallest singular value. Assume that the estimates 
+6 and 8 6  are available and define the matrix 

H = JTJ + A21 - (6; + A2)+6+z.  (14) 

With this choice, the second smallest singular value of J plays 
in 

Hi?& = +5 (15) 

the same role as c76 in (1 1) and then will provide a convergent 
estimate of C5 to v5 and c ? ~  to c75 . 

At this point, suppose that +5 is an estimate of v 5  so that 
+5 M v 5  and llG5ll = 1 . This estimate is used to compute +& from (15). Then, an estimate of the square of the second 
smallest singular value of J is found from 

and the estimate of v 5  is updated using 

On the basis of this modified estimation algorithm, crossing 
of singularities can be effectively detected; also, by switching 
the two singular values and the associated estimates +5 and +6, 
the estimation of the smallest singular value will be accurate 
even when the two smallest singular values cross [17]. 
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Fig. 6. Joint angles for Trajectory 1 with feedback correction; damped least-squares scheme (solid), weighted damped least-squares scheme (dashed) 

C. User-De$ned Accuracy 

The above damped least-squares method achieves a compro- 
mise between accuracy and robustness of the solution. This 
is performed without specific regard to the components of 
the particular task assigned to the manipulator’s end-effector. 
The user-dejined accuracy strategy introduced in [ 131 based 
on the weighted damped least-squares method in [7] allows 
to discriminate between directions in the end-effector space 
where higher accuracy is desired and directions where lower 
accuracy can be tolerated. This is the case, for instance, of spot 
welding or spray painting in which the tool angle around the 
approach direction is not essential to the fulfillment of the task. 

Let a weighted end-effector velocity vector be defined as 

where W is the (6 x 6) task-dependent weighting matrix 
taking into account the anisotropy of the task requirements. 
Substituting (18) into (1) gives 

(19) 
- v = qq)q  

where 5 = WJ . It is worth noticing that if W is full-rank, 
solving (1) is equivalent to solving (19), but with different 

conditioning of the system of equations to solve. This suggests 
to select only the strictly necessary weighting action in order 
to avoid undesired ill-conditioning of J . 

Equation (19) can be solved using the weighted damped 
least-squares technique [7], that is 

(20) 

Again, the singular value decomposition of the matrix J is 
helpful, i.e. 

JT(q)i? = (JT(q)J(q) + x21)q.  

6 

J = C&UiVF (21) 
i=l 

and the solution to (20) can be written as 

It is clear that the singular values Zi and the singular vectors 
Ui and Vi depend on the choice of the weighting matrix W. 
While this has no effect on the solution q as long as ZG >> A, 
close to singularities where 5, << A, for some T < 6, the 
solution can be shaped by properly selecting the matrix W. 
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Translation and orientation error norms and estimates of the two smallest singular values for Trajectory 1 with feedback correction; damped 

For the typical elbow geometry with spherical wrist, it is 
worthwhile to devise a special handling of the wrist singularity 
which is difficult to predict at the planning level in the 
end-effector space. It can be recognized that, at the wrist 
singularity, there are only two components of the angular 
velocity vector that can be generated by the wrist itself. The 
remaining component might be generated by the inner joints, at 
the expense of loss of accuracy along some other end-effector 
space directions though. For this reason, lower weight should 
be put on the angular velocity component that is infeasible to 
the wrist. For the ABB IRb 2000, this is easily expressed in 
the frame attached to link 4; let R4 denote the rotation matrix 
describing orientation of this frame with respect to the base 
frame, so that the infeasible component is aligned with the 
z-axis. We propose then to choose the weighting matrix as 

Similarly to the choice of the damping factor as in (lo), 
the weighting factor w is selected according to the following 
expression: 

where wmin 2 0 is a design parameter [13] and [26]. 

D. Feedback Correction 
The above inverse kinematics solutions are expected to suf- 

fer from typical numerical drift, when implemented in discrete 
time. In order to avoid this drawback, a feedback correction 
term [19]-[21] can be keenly introduced by replacing the 
end-effector velocity v by 

vd 4- K e  (25) 

where the subscript “d” denotes the desired reference 
end-effector velocity, K is a positive definite-usually 
diagonal-(6 x 6) matrix, and e expresses the error between 
the desired and actual end-effector location. The error e can 
be represented by [27] 

where the translation error is given by the (3 x 1) vector et and 
the orientation error is given by the (3 x 1) vector e,. The end- 
effector position is expressed by the (3 x 1) position vector p 
while its orientation by the (3 x 3) rotation matrix R = (n s a), 
with n, s, a being the unit vectors of the end-effector frame. 

It is important to notice that, in the neighborhood of a 
singularity, end-effector errors typically increase along the 
near-degenerate components of the given end-effector velocity 
and convergence is slowed down [21]. Therefore, we propose 
to shape the action of the feedback correction term around the 
singularities using K = @KO, where KO is a constant matrix 
and e is a varying factor to be properly adjusted. 

We have found that it is important to have e = 0 inside 
the singular region defined by 0 6  5 E .  Indeed, if a velocity 
is assigned along a near-degenerate direction and a nonzero 
gain is used for the feedback correction term, the error e 
will eventually approach zero; however, the resulting joint 
velocities may cause the manipulator to reach the joint limits. 
Outside the singular region, interpolation is used to achieve 
a smooth solution and full value to the gains (e = 1) is 
set when far enough from the singularity. In our experience, 
interpolation had to be performed when E < 0 6  < 4~ using a 
quadratic type function, i.e. 
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Fig. 8. Joint angles for Trajectory 2; case a) (solid), case b) (dashed). 

IV. NUMERICAL IMPLEMENTATION ASPECTS 

The algorithmic computational load of the above inverse 
kinematics schemes plays a significant role in view of real- 
time implementation on the industrial manipulator. Therefore, 
the following analysis is devoted to the numerical aspects of 
the solution. 

The direct kinematics was computed with an algorithm 
based on the standard technique proposed in [l]. Care was 
taken to avoid unnecessary computation, like products by zeros 
or ones, or matrix elements that are not required to achieve the 
final result. The overall computation of position and orientation 
of the end-effector and Jacobian matrix was thus reduced to 
127 flops. The number of flops is the total number of floating 
point operations as defined in [14] and can be found e.g. in 
MATLAB using the flop function. 

Equation (4) was solved by computing 

y = JTu (28) 

and solving 

( J ~ J  +  PI)^ = (29) 

ioint angle 2 0.8 I I 

0.75 I- 

s 0.65 0.7' 0 0.5 1 

time [SI 
joint angle 4 2 

e 
1.7 

1.6 

1 C I  

-0 0.5 1 
time [SI 

joint angle 6 0.1 I 

time- [SI 

for q, using the Cholesky decomposition 

( J ~ J  + x21) = G ~ G  (30) 

where G is an upper triangular matrix of proper dimensions. 
The Cholesky decomposition was computed with a C function 
based on algorithm 4.2.2 in [14]; the number of flops was 91. 
The linear system (29), decomposed as in (30), was solved 
using algorithms 3.1.1 and 3.1.2 in [14], requiring 36 flops 
each. 

Furthermore, the matrix JT J is symmetric, and accordingly 
only the upper triangular part of the matrix needs to be 
computed. The computation of JTu in (28) and JTJ + X21 in 
(30) required 303 flops. Then, the total amount of computation 
involved to solve (4) for a given J was 466 flops. 

As for the estimate of the smallest singular value, solution 
of (11) using the available Cholesky factor G given in (30) 
required additional 72 flops. Further, the computation of the 
norm llobll used in (12)-(13) involved 12 flops, while the 
computation of 5: in (12) required 2 flops. In total, this gave 
92 flops. 

Noticing that 
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Fig. 9. Joint velocities for Trajectory 2; case (a)) (solid), case (b)) (dashed). 

computation of i,i from (15) can be achieved again with the 
Cholesky factor G available from (30). This was done by first 
solving 

(32) ( J ~ J  +  PI)^ = i,5 

i,; = z - i,f pi, 
for z, and then computing 

(33) 
Finally, (16)-( 17) were computed. The total computational 
load for the estimate of the second smallest singular value 
was thus 115 flops. 

6 (  6 5). 

v .  EXPERIMENTAL RESULTS 

A. Laboratory Set-Up 
The experiments were run on an ABB IRb 2000 robot 

manipulator. The original joint servos of the S3 industrial 
control system were used, and an interface was established 
at the joint ’increment level. This allowed implementation of 
a two-stage control strategy, that is an inverse kinematics 
module based on the foregoing damped least-squares solution 
providing the reference inputs to the manipulator joint servos. 
This was done in cooperation with ABB Robotics who slightly 

modified the S3 control system by adding an interface board 
with a dual-port RAM, as well as software modules to establish 
the required communication protocol. The resulting communi- 
cation facilitated the transfer of joint variables and increments 
at a sampling time of 12 (ms), and in addition it allowed for 
remote initialization and activation of the ABB S3 system. 

The inverse kinematics were computed on a 25 (MHz) 
Motorola 68040 VME board which communicated with the 
ABB S3 control system through the dual-port RAM. The 
software was developed on a SUN 350 workstation, and 
the executable code was downloaded to the 68040 board 
and executed using VxWorks. A block diagram showing the 
interconnection between major components of the laboratory 
set-up is sketched in Fig. 3. 

The program system which was executed on the Motorola 
68040 was written in C, and consisted of two activities; an 
interactive activity containing initialization and user interface, 
and the real-time controller activity. The real-time controller 
activity had the following steps: 

input joint angles, 
calculate joint increments, 
output joint increments, 
store data for logging. 
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Fig. 10. Translation and orientation error norms and estimates of the two smallest singular values for Trajectory 2; case (a)) (solid), case (b)) (dashed). 

The interactive user interface contained initialization of the S3 
control system and of the communication between the ABB 
controller and the real-time activity. Further it contained ini- 
tialization of kinematic parameters and a menu-driven system 
for adjusting kinematic parameters, specifying trajectory data, 
and selecting the algorithm for the inverse kinematics solution. 
In addition, a function for transferring logged data to the 
SUN system was included. The !egged data was subsequently 
written to a file in MATLAB format which allowed for 
postprocessing and plotting in the SUN UNIX environment. 

A simple solution to the problem of copmunication be- 
tween the real-time and interactive activifies was achieved 
by including both activities 'in the same 'C program. The 
interactive activity was the main program, while the real-time 
activity was called from a function which was started by a 
timer interrupt every 12 (ms). The data transfer between the 
two activities was performed through global data structures 
containing parameters for the inverse kinematics algorithms, 
trajectory data, logged data and logical variables for algorithm 
selection. 

B. Case Studies 

In the following we present two case studies to demonstrate 
the application of the above schemes to real-time kinematic 
control of an ipdustrjal manipulator. It is worth mentioning that 
extensive simulation of the system has been performed to fore- 
see the behavior of $e manipulator under the proposed control. 
These results, however, are not reported here for brevity, since 
they closely match those obtained in the experiments. 

A reference trajectory though the prist 
singularity was studied. The initial configuration was 

Trajectory 1: 

q =  (0 7r/12 -7r/2 0 0.15 O)T rad. 

An increment A p  = (0.18 0.45 - 0.45)T [m] was interpo- 
lated in end-effector coordinates using linear segments with 
parabolic blends [28]. The blend time was 0.2 s, and the total 
time of the trajectory was 1.5 s. The resulting cruise velocity 
between 0.2 s and 1.3 s was approximately 0.5 [ d s ] .  The 
wrist singularity was encountered after approximately 0.6 s. 

The damping factor was computed from (10) with E = 0.04 
and A,,, = 0.04. The estimate 8 6  of the smallest singular 
value was computed using (11)-(17). The initial estimates of 
the singular values and the singular vectors were found using 
the singular value decomposition in MATLAB. 

The basic damped least-squares scheme (4) was used first; 
then, for comparison, the same trajectory was tested with the 
weighted damped least-squares scheme based on (20). The 
weighting matrix was chosen as in (23)-(24) with w,in = 0.1. 
The results are shown in Figs. 4 and 5 for both the damped 
least-squares and weighted damped least-squares schemes, 
without feedback correction term. In both cases the joint 
velocities were feasible with peak. values of approximately 2 
rads. Without weighting, the norm of the Fanslation error at 
final time t f  was Ilet(tf)ll = 0.055 [m], while the orientation 
error norm was Ile,(tf)II = 0.06 rad. With weighting, the 
errors were Ilet(tf)ll = 0.0025 [m] and Ileo(tf)ll = 0.12 rad. 

This result clearly demonstrates the advantage of using 
weighting since our main concern was to achieve accuracy 
in translation. In fact, weighting resulted in a reduction of the 
translation error by a factor of approximately 20, while the 
orientation error was increased only by a factor of two. The 
effect of weighting on the smallest singular values is seen 
from Fig. 5. The solution is shaped so that the translational 
components of u6 are small; this is achieved at the expense of 
a significant reduction of (Tg around the singularity compared 
to the corresponding 06 in the non-weighted case. 
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The same experiments were repeated with a feedback 
correction term according to (25) and (26) with K = 
diag(l2.. .12). The results are shown in Figs. 6 and 7. 
In this case the joint velocities were higher. In fact, with 
the damped least-squares solution, joint velocities 4 and 
6 saturated between 0 . 6 4 8  s at 5 rads and -5 rads, 
respectively. With the introduction of weighting, the joint 
velocities were feasible with peak values less than 5 rads. 
Thanks to the feedback correction term, the end-effector error 
e converged to zero after leaving the singular region (see Fig. 
7). This resulted in a reorientation of joints 4 and 6 by fr 
in the non-weighted case, which reflects the fact that large 
increments in joint angles may result from small end-effector 
increments when the manipulator is close to a singularity. 
Remarkably, Fig. 7 reveals also that outside the singular 
region 66 tends to 0 6 ;  obviously, this was not the case in 
the previous experiments without feedback correction (see 
Fig. 5). 

Trajectory 2: A trajectory involving both the shoulder and 
wrist singularities was studied. The initial configuration was 

g =  (0 0.7893 - ~ / 2  r / 2  -0.05 0)’ rad. 

An increment Ap = (0.1 0.1 0)’ [m] was interpolated in 
end-effector coordinates using linear segments with parabolic 
blends. The blend time was 0.15 s, and the total time of the 
trajectory was 1.0 s. The resulting cruise velocity between 
0.15 s and 0.85 s was approximately 0.166 [ d s ] .  The wrist 
singularity was encountered after approximately 0.22 s. 

Also for this trajectory, the damping factor was computed 
from (10) with E = 0.04 and A,, = 0.04. The basic damped 
least-squares solution (4) was used. The estimate 6 6  of the 
smallest singular value was found: 1) by computing both 
6s and 66 from (11)-(17), and 2) by computing 6 6  from 
(1 1)-( 13). As above, the initial estimates of the singular values 
and the singular vectors were found using the singular value 
decomposition in MATLAB. 

The results without feedback correction are shown in Fig. 
8-10. The damped least-squares scheme performs well also in 
this case. The norm of the translation error at final time t f  was 
Ilet(tf)II = 0.03[m], while the norm of the orientation error 
was Ileo(tf)II = 0.015 rad. 

In case a) the crossing of the two smallest singular val- 
ues associated with the wrist and shoulder singularity was 
successfully detected at 0.15 s and 0.37 s, and an accurate 
estimate 6 6  of the smallest singular value was found. This 
gave satisfactory damping around the wrist singularity. The 
resulting joint velocities had peak values less than 1.2 rads. 
In case b) the crossing of the two smallest singular values 
caused the estimate 6 6  to track 0 5 ,  and the wrist singularity 
appearing at 0.22 s was not detected. This resulted into a 
low damping factor around the wrist singularity, and high 
joint velocities were experienced; in particular, the velocity 
of joint 1 saturated at -2 rads. Incidentally, the final errors 
were a little smaller in case b) since the incorrect estimate 
of (T6 produced lower damping on the solution throughout the 
singular region. 

VI. CONCLUSION 

Damped least-squares schemes for kinematic control of 
robot manipulators have been successfully tested in a number 
of experimental case studies. 

The basic damped least-squares scheme, offering efficient 
singularity handling capabilities, has been extended to include 
weighting which further provides user-defined accuracy capa- 
bilities. A feedback cokection term to avoid numerical drifts 
of the discrete-time implementation of the inverse differential 
kinematics has been adopted, and its effects on the manipulator 
behavior with both the above schemes have been studied. 
Finally, the estimate of the second smallest singular value of 
the Jacobian matrix has been implemented and its improved 
potential over the scheme using the estimate of the sole 
smallest singular value has been demonstrated for a trajectory 
involving both the shoulder and wrist singularities. 

Remarkably, all the above refinements of the basic damped 
least-squares solution have been implemented on industrially 
available hardware indicating that enhanced real-time kine- 
matic control of robot manipulators through singularities is 
definitely possible. 
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